O ct 1 99 7 Damping of low - energy excitations of a trapped Bose condensate at finite temperatures

نویسندگان

  • P. O. Fedichev
  • G. V. Shlyapnikov
  • J. T. M. Walraven
چکیده

We present the theory of damping of low-energy excitations of a trapped Bose condensate at finite temperatures, where the damping is provided by the interaction of these excitations with the thermal excitations. We emphasize the key role of stochastization in the behavior of the thermal excitations for damping in non-spherical traps. The damping rates of the lowest excita-tions, following from our theory, are in fair agreement with the data of recent JILA and MIT experiments. The damping of quasiclassical excitations is determined by the condensate boundary region, and the result for the damping rate is drastically different from that in a spatially homogeneous gas. After the discovery of Bose-Einstein condensation (BEC) [1–3], one of the major directions in the physics of ultra-cold gases has been the investigation of collective many-body effects. Especially interesting is the behavior of low-energy collective excitations of a trapped condensate. The JILA [4,6] and MIT [5,7] experimental studies of the excitations related to shape oscillations of the condensate show that these excitations are damped and provide us with interesting results on the temperature dependence of the damping rates and frequency shifts. In this letter we develop the theory of damping of excitations of a trapped condensate in the Thomas-Fermi regime at finite temperatures, where the presence of a thermal component is important. We confine ourselves to the damping of low-energy excitations, i.e.,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c on d - m at / 9 71 01 28 v 3 1 7 N ov 1 99 7 Damping of low - energy excitations of a trapped Bose condensate at finite temperatures

We present the theory of damping of low-energy excitations of a trapped Bose condensate at finite temperatures, where the damping is provided by the interaction of these excitations with the thermal excitations. We emphasize the key role of stochastization in the behavior of the thermal excitations for damping in non-spherical traps. The damping rates of the lowest excita-tions, following from ...

متن کامل

ar X iv : c on d - m at / 9 71 01 28 v 1 1 4 O ct 1 99 7 Damping of low - energy excitations of a trapped Bose condensate at finite temperatures

We present the theory of damping of low-energy excitations of a trapped Bose condensate at finite temperatures, where the damping is provided by the interaction of these excitations with the thermal excitations. We emphasize the key role of stochastization in the behavior of the thermal excitations for damping in non-spherical traps. The damping rates of the lowest excita-tions, following from ...

متن کامل

Quasiparticle kinetic equation in a trapped Bose gas at low temperatures

Recently the authors used the Kadanoff-Baym non-equilibrium Green's function formalism to derive kinetic equation for the non-condensate atoms, in conjunction with a consistent generalization of the Gross-Pitaevskii equation for the Bose condensate wavefunction. This work was limited to high temperatures , where the excited atoms could be described by a Hartree-Fock particle-like spectrum. We p...

متن کامل

Theory of excitations of the condensate and non-condensate at finite temperatures

— We give an overview of the current theory of collective modes in trapped atomic gases at finite temperatures, when the dynamics of the condensate and non-condensate must both be considered. A simple introduction is given to the quantum field formulation of the dynamics of an interacting Bose-condensed system, based on equations of motion for the condensate wavefunction and singleparticle Gree...

متن کامل

ar X iv : c on d - m at / 9 71 10 36 v 2 5 D ec 1 99 7 Hydrodynamic damping in trapped Bose gases

Griffin, Wu and Stringari have derived the hydrodynamic equations of a trapped dilute Bose gas above the Bose-Einstein transition temperature. We give the extension which includes hydrodynamic damping, following the classic work of Uehling and Uhlenbeck based on the Chapman-Enskog procedure. Our final result is a closed equation for the velocity fluctuations δv which includes the hydrodynamic d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997